个性化联合学习(FL)促进了多个客户之间的合作,以学习个性化模型而无需共享私人数据。该机制减轻了系统中通常遇到的统计异质性,即不同客户端的非IID数据。现有的个性化算法通常假设所有客户自愿进行个性化。但是,潜在的参与者可能仍然不愿个性化模型,因为他们可能无法正常工作。在这种情况下,客户选择使用全局模型。为了避免做出不切实际的假设,我们介绍了个性化率,该率是愿意培训个性化模型,将其介绍给联合设置并提出DYPFL的客户的比例。这种动态个性化的FL技术激励客户参与个性化本地模型,同时允许在整体模型表现更好时采用全球模型。我们表明,DYPFL中的算法管道可以保证良好的收敛性能,从而使其在广泛的条件下优于替代性个性化方法,包括异质性,客户端数量,本地时期和批量尺寸的变化。
translated by 谷歌翻译
联合学习是一个分布式机器学习机制,本地设备在中央服务器的编排中协作培训共享全局模型,同时保留所有私有数据分散。在系统中,传输模型参数及其更新而不是原始数据,因此通信瓶颈已成为一个关键挑战。此外,近期的较大和更深层次的机器学习模型也在将它们部署到联邦环境中的困难造成更多困难。在本文中,我们设计了一个联合的两阶段学习框架,即在设备上使用切割层增强了原型联合学习,并使用基于符号的随机梯度下降与大多数投票方法进行模型更新。剪切图层在设备上学习本地原始数据的信息和低维表示,有助于减少全局模型参数并防止数据泄漏。基于符号的SGD与大多数投票方式进行模型更新,也有助于缓解通信限制。凭经验,我们表明我们的系统是一种有效和隐私,保留联合学习计划和适用于一般应用方案的诉讼。
translated by 谷歌翻译
Traffic flow prediction is an important part of smart transportation. The goal is to predict future traffic conditions based on historical data recorded by sensors and the traffic network. As the city continues to build, parts of the transportation network will be added or modified. How to accurately predict expanding and evolving long-term streaming networks is of great significance. To this end, we propose a new simulation-based criterion that considers teaching autonomous agents to mimic sensor patterns, planning their next visit based on the sensor's profile (e.g., traffic, speed, occupancy). The data recorded by the sensor is most accurate when the agent can perfectly simulate the sensor's activity pattern. We propose to formulate the problem as a continuous reinforcement learning task, where the agent is the next flow value predictor, the action is the next time-series flow value in the sensor, and the environment state is a dynamically fused representation of the sensor and transportation network. Actions taken by the agent change the environment, which in turn forces the agent's mode to update, while the agent further explores changes in the dynamic traffic network, which helps the agent predict its next visit more accurately. Therefore, we develop a strategy in which sensors and traffic networks update each other and incorporate temporal context to quantify state representations evolving over time.
translated by 谷歌翻译
Human pose estimation has been widely applied in various industries. While recent decades have witnessed the introduction of many advanced two-dimensional (2D) human pose estimation solutions, three-dimensional (3D) human pose estimation is still an active research field in computer vision. Generally speaking, 3D human pose estimation methods can be divided into two categories: single-stage and two-stage. In this paper, we focused on the 2D-to-3D lifting process in the two-stage methods and proposed a more advanced baseline model for 3D human pose estimation, based on the existing solutions. Our improvements include optimization of machine learning models and multiple parameters, as well as introduction of a weighted loss to the training model. Finally, we used the Human3.6M benchmark to test the final performance and it did produce satisfactory results.
translated by 谷歌翻译
A default assumption in reinforcement learning and optimal control is that experience arrives at discrete time points on a fixed clock cycle. Many applications, however, involve continuous systems where the time discretization is not fixed but instead can be managed by a learning algorithm. By analyzing Monte-Carlo value estimation for LQR systems in both finite-horizon and infinite-horizon settings, we uncover a fundamental trade-off between approximation and statistical error in value estimation. Importantly, these two errors behave differently with respect to time discretization, which implies that there is an optimal choice for the temporal resolution that depends on the data budget. These findings show how adapting the temporal resolution can provably improve value estimation quality in LQR systems from finite data. Empirically, we demonstrate the trade-off in numerical simulations of LQR instances and several non-linear environments.
translated by 谷歌翻译
Cross-Entropy Method (CEM) is commonly used for planning in model-based reinforcement learning (MBRL) where a centralized approach is typically utilized to update the sampling distribution based on only the top-$k$ operation's results on samples. In this paper, we show that such a centralized approach makes CEM vulnerable to local optima, thus impairing its sample efficiency. To tackle this issue, we propose Decentralized CEM (DecentCEM), a simple but effective improvement over classical CEM, by using an ensemble of CEM instances running independently from one another, and each performing a local improvement of its own sampling distribution. We provide both theoretical and empirical analysis to demonstrate the effectiveness of this simple decentralized approach. We empirically show that, compared to the classical centralized approach using either a single or even a mixture of Gaussian distributions, our DecentCEM finds the global optimum much more consistently thus improves the sample efficiency. Furthermore, we plug in our DecentCEM in the planning problem of MBRL, and evaluate our approach in several continuous control environments, with comparison to the state-of-art CEM based MBRL approaches (PETS and POPLIN). Results show sample efficiency improvement by simply replacing the classical CEM module with our DecentCEM module, while only sacrificing a reasonable amount of computational cost. Lastly, we conduct ablation studies for more in-depth analysis. Code is available at https://github.com/vincentzhang/decentCEM
translated by 谷歌翻译
Learning a risk-aware policy is essential but rather challenging in unstructured robotic tasks. Safe reinforcement learning methods open up new possibilities to tackle this problem. However, the conservative policy updates make it intractable to achieve sufficient exploration and desirable performance in complex, sample-expensive environments. In this paper, we propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent. Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control. Concretely, the baseline agent is responsible for maximizing rewards under standard RL settings. Thus, it is compatible with off-the-shelf training techniques of unconstrained optimization, exploration and exploitation. On the other hand, the safe agent mimics the baseline agent for policy improvement and learns to fulfill safety constraints via off-policy RL tuning. In contrast to training from scratch, safe policy correction requires significantly fewer interactions to obtain a near-optimal policy. The dual policies can be optimized synchronously via a shared replay buffer, or leveraging the pre-trained model or the non-learning-based controller as a fixed baseline agent. Experimental results show that our approach can learn feasible skills without prior knowledge as well as deriving risk-averse counterparts from pre-trained unsafe policies. The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks with respect to both safety constraint satisfaction and sample efficiency.
translated by 谷歌翻译
Most existing scene text detectors require large-scale training data which cannot scale well due to two major factors: 1) scene text images often have domain-specific distributions; 2) collecting large-scale annotated scene text images is laborious. We study domain adaptive scene text detection, a largely neglected yet very meaningful task that aims for optimal transfer of labelled scene text images while handling unlabelled images in various new domains. Specifically, we design SCAST, a subcategory-aware self-training technique that mitigates the network overfitting and noisy pseudo labels in domain adaptive scene text detection effectively. SCAST consists of two novel designs. For labelled source data, it introduces pseudo subcategories for both foreground texts and background stuff which helps train more generalizable source models with multi-class detection objectives. For unlabelled target data, it mitigates the network overfitting by co-regularizing the binary and subcategory classifiers trained in the source domain. Extensive experiments show that SCAST achieves superior detection performance consistently across multiple public benchmarks, and it also generalizes well to other domain adaptive detection tasks such as vehicle detection.
translated by 谷歌翻译
Safe and efficient co-planning of multiple robots in pedestrian participation environments is promising for applications. In this work, a novel multi-robot social-aware efficient cooperative planner that on the basis of off-policy multi-agent reinforcement learning (MARL) under partial dimension-varying observation and imperfect perception conditions is proposed. We adopt temporal-spatial graph (TSG)-based social encoder to better extract the importance of social relation between each robot and the pedestrians in its field of view (FOV). Also, we introduce K-step lookahead reward setting in multi-robot RL framework to avoid aggressive, intrusive, short-sighted, and unnatural motion decisions generated by robots. Moreover, we improve the traditional centralized critic network with multi-head global attention module to better aggregates local observation information among different robots to guide the process of individual policy update. Finally, multi-group experimental results verify the effectiveness of the proposed cooperative motion planner.
translated by 谷歌翻译
While large-scale sequence modeling from offline data has led to impressive performance gains in natural language and image generation, directly translating such ideas to robotics has been challenging. One critical reason for this is that uncurated robot demonstration data, i.e. play data, collected from non-expert human demonstrators are often noisy, diverse, and distributionally multi-modal. This makes extracting useful, task-centric behaviors from such data a difficult generative modeling problem. In this work, we present Conditional Behavior Transformers (C-BeT), a method that combines the multi-modal generation ability of Behavior Transformer with future-conditioned goal specification. On a suite of simulated benchmark tasks, we find that C-BeT improves upon prior state-of-the-art work in learning from play data by an average of 45.7%. Further, we demonstrate for the first time that useful task-centric behaviors can be learned on a real-world robot purely from play data without any task labels or reward information. Robot videos are best viewed on our project website: https://play-to-policy.github.io
translated by 谷歌翻译